Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.709
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38584086

RESUMO

Machine learning is an emerging tool in clinical psychology and neuroscience for the individualized prediction of psychiatric symptoms. However, its application in non-clinical populations is still in its infancy. Given the widespread morphological changes observed in psychiatric disorders, our study applies five supervised machine learning regression algorithms-ridge regression, support vector regression, partial least squares regression, least absolute shrinkage and selection operator regression, and Elastic-Net regression-to predict anxiety and depressive symptom scores. We base these predictions on the whole-brain gray matter volume in a large non-clinical sample (n = 425). Our results demonstrate that machine learning algorithms can effectively predict individual variability in anxiety and depressive symptoms, as measured by the Mood and Anxiety Symptoms Questionnaire. The most discriminative features contributing to the prediction models were primarily located in the prefrontal-parietal, temporal, visual, and sub-cortical regions (e.g. amygdala, hippocampus, and putamen). These regions showed distinct patterns for anxious arousal and high positive affect in three of the five models (partial least squares regression, support vector regression, and ridge regression). Importantly, these predictions were consistent across genders and robust to demographic variability (e.g. age, parental education, etc.). Our findings offer critical insights into the distinct brain morphological patterns underlying specific components of anxiety and depressive symptoms, supporting the existing tripartite theory from a neuroimaging perspective.


Assuntos
Depressão , Substância Cinzenta , Humanos , Masculino , Feminino , Substância Cinzenta/diagnóstico por imagem , Depressão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Ansiedade/diagnóstico por imagem , Ansiedade/psicologia , Afeto
2.
Alzheimers Res Ther ; 16(1): 85, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641653

RESUMO

BACKGROUND: Dementia with Lewy bodies (DLB) is characterized by insular atrophy, which occurs at the early stage of the disease. Damage to the insula has been associated with disorders reflecting impairments of the most fundamental components of the self, such as anosognosia, which is a frequently reported symptom in patients with Lewy bodies (LB). The purpose of this study was to investigate modifications of the self-concept (SC), another component of the self, and to identify neuroanatomical correlates, in prodromal to mild DLB. METHODS: Twenty patients with prodromal to mild DLB were selected to participate in this exploratory study along with 20 healthy control subjects matched in terms of age, gender, and level of education. The Twenty Statements Test (TST) was used to assess the SC. Behavioral performances were compared between LB patients and control subjects. Three-dimensional magnetic resonance images (MRI) were acquired for all participants and correlational analyses were performed using voxel-based morphometry (VBM) in whole brain and using a mask for the insula. RESULTS: The behavioral results on the TST showed significantly impaired performances in LB patients in comparison with control subjects (p < .0001). Correlational analyses using VBM revealed positive correlations between the TST and grey matter volume within insular cortex, right supplementary motor area, bilateral inferior temporal gyri, right inferior frontal gyrus, and left lingual gyrus, using a threshold of p = .001 uncorrected, including total intracranial volume (TIV), age, and MMSE as nuisance covariates. Additionally, correlational analysis using a mask for the insula revealed positive correlation with grey matter volume within bilateral insular cortex, using a threshold of p = .005. CONCLUSIONS: The behavioral results confirm the existence of SC impairments in LB patients from the prodromal stage of the disease, compared to matched healthy controls. As we expected, VBM analyses revealed involvement of the insula, among that of other brain regions, already known to be involved in other self-components. While this study is exploratory, our findings provide important insights regarding the involvement of the insula within the self, confirming the insula as a core region of the self-networks, including for high-order self-representations such as the SC.


Assuntos
Doença por Corpos de Lewy , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/patologia , Córtex Insular , Encéfalo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética
3.
J Neurol Sci ; 459: 122945, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564847

RESUMO

The pathological hallmarks of amyotrophic lateral sclerosis (ALS) are degeneration of the primary motor cortex grey matter (GM) and corticospinal tract (CST) resulting in upper motor neuron (UMN) dysfunction. Conventional brain magnetic resonance imaging (MRI) shows abnormal CST hyperintensity in some UMN-predominant ALS patients (ALS-CST+) but not in others (ALS-CST-). In addition to the CST differences, we aimed to determine whether GM degeneration differs between ALS-CST+ and ALS-CST- patients by cortical thickness (CT), voxel-based morphometry (VBM) and fractal dimension analyses. We hypothesized that MRI multifractal (MF) measures could differentiate between neurologic controls (n = 14) and UMN-predominant ALS patients as well as between patient subgroups (ALS-CST+, n = 21 vs ALS-CST-, n = 27). No significant differences were observed in CT or GM VBM in any brain regions between patients and controls or between ALS subgroups. MF analyses were performed separately on GM of the whole brain, of frontal, parietal, occipital, and temporal lobes as well as of cerebellum. Estimating MF measures D (Q = 0), D (Q = 1), D (Q = 2), Δf, Δα of frontal lobe GM classified neurologic controls, ALS-CST+ and ALS-CST- groups with 98% accuracy and > 95% in F1, recall, precision and specificity scores. Classification accuracy was only 74% when using whole brain MF measures and < 70% for other brain lobes. We demonstrate that MF analysis can distinguish UMN-predominant ALS subgroups based on GM changes, which the more commonly used quantitative approaches of CT and VBM cannot.


Assuntos
Esclerose Amiotrófica Lateral , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Esclerose Amiotrófica Lateral/complicações , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/patologia , Tratos Piramidais/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
4.
Hum Brain Mapp ; 45(5): e26671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590252

RESUMO

There remains little consensus about the relationship between sex and brain structure, particularly in early adolescence. Moreover, few pediatric neuroimaging studies have analyzed both sex and gender as variables of interest-many of which included small sample sizes and relied on binary definitions of gender. The current study examined gender diversity with a continuous felt-gender score and categorized sex based on X and Y allele frequency in a large sample of children ages 9-11 years old (N = 7195). Then, a statistical model-building approach was employed to determine whether gender diversity and sex independently or jointly relate to brain morphology, including subcortical volume, cortical thickness, gyrification, and white matter microstructure. Additional sensitivity analyses found that male versus female differences in gyrification and white matter were largely accounted for by total brain volume, rather than sex per se. The model with sex, but not gender diversity, was the best-fitting model in 60.1% of gray matter regions and 61.9% of white matter regions after adjusting for brain volume. The proportion of variance accounted for by sex was negligible to small in all cases. While models including felt-gender explained a greater amount of variance in a few regions, the felt-gender score alone was not a significant predictor on its own for any white or gray matter regions examined. Overall, these findings demonstrate that at ages 9-11 years old, sex accounts for a small proportion of variance in brain structure, while gender diversity is not directly associated with neurostructural diversity.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Humanos , Masculino , Feminino , Adolescente , Criança , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/anatomia & histologia , Substância Branca/diagnóstico por imagem , Neuroimagem
5.
Neurosci Lett ; 829: 137768, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38604300

RESUMO

BACKGROUND: Aggression outcome expectation is an important cognitive factor of aggression. Discovering the neural mechanism of aggression outcome expectation is conducive to developing aggression research. However, the neural correlates underlying aggression outcome expectation and its effect remain elusive. METHODS: We utilized voxel-based morphometry (VBM) to unravel the neural architecture of aggression outcome expectation measured by the Social Emotional Information Processing Assessment for Adults and its relationship with aggression measured by the Buss Perry Aggression Questionnaire in a sample of 185 university students (114 female; mean age = 19.94 ± 1.62 years; age range: 17-32 years). RESULTS: We found a significantly positive correlation between aggression outcome expectation and the regional gray matter volume (GMV) in the right middle temporal gyrus (MTG) (x = 55.5, y = -58.5, z = 1.5; t = 3.35; cluster sizes = 352, p < 0.05, GRF corrected). Moreover, aggression outcome expectation acted as a mediator underlying the association between the right MTG volume and aggression. CONCLUSIONS: These results revealed the neural correlates of aggression outcome expectation and its effect on aggression for the first time, which may contribute to our understanding of the cognitive neural mechanism of aggression and potentially identifying neurobiological markers for aggression.


Assuntos
Agressão , Motivação , Adulto , Humanos , Feminino , Adolescente , Adulto Jovem , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral , Lobo Temporal , Imageamento por Ressonância Magnética/métodos , Encéfalo
6.
Mol Autism ; 15(1): 16, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576034

RESUMO

BACKGROUND: This meta-analysis aimed to explore the most robust findings across numerous existing resting-state functional imaging and voxel-based morphometry (VBM) studies on the functional and structural brain alterations in individuals with autism spectrum disorder (ASD). METHODS: A whole-brain voxel-wise meta-analysis was conducted to compare the differences in the intrinsic functional activity and gray matter volume (GMV) between individuals with ASD and typically developing individuals (TDs) using Seed-based d Mapping software. RESULTS: A total of 23 functional imaging studies (786 ASD, 710 TDs) and 52 VBM studies (1728 ASD, 1747 TDs) were included. Compared with TDs, individuals with ASD displayed resting-state functional decreases in the left insula (extending to left superior temporal gyrus [STG]), bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC), left angular gyrus and right inferior temporal gyrus, as well as increases in the right supplementary motor area and precuneus. For VBM meta-analysis, individuals with ASD displayed decreased GMV in the ACC/mPFC and left cerebellum, and increased GMV in the left middle temporal gyrus (extending to the left insula and STG), bilateral olfactory cortex, and right precentral gyrus. Further, individuals with ASD displayed decreased resting-state functional activity and increased GMV in the left insula after overlapping the functional and structural differences. CONCLUSIONS: The present multimodal meta-analysis demonstrated that ASD exhibited similar alterations in both function and structure of the insula and ACC/mPFC, and functional or structural alterations in the default mode network (DMN), primary motor and sensory regions. These findings contribute to further understanding of the pathophysiology of ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Giro do Cíngulo , Imageamento por Ressonância Magnética/métodos
7.
BMC Psychiatry ; 24(1): 281, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622613

RESUMO

BACKGROUND: Violence in schizophrenia (SCZ) is a phenomenon associated with neurobiological factors. However, the neural mechanisms of violence in patients with SCZ are not yet sufficiently understood. Thus, this study aimed to explore the structural changes associated with the high risk of violence and its association with impulsiveness in patients with SCZ to reveal the possible neurobiological basis. METHOD: The voxel-based morphometry approach and whole-brain analyses were used to measure the alteration of gray matter volume (GMV) for 45 schizophrenia patients with violence (VSC), 45 schizophrenia patients without violence (NSC), and 53 healthy controls (HC). Correlation analyses were used to examine the association of impulsiveness and brain regions associated with violence. RESULTS: The results demonstrated reduced GMV in the right insula within the VSC group compared with the NSC group, and decreased GMV in the right temporal pole and left orbital part of superior frontal gyrus only in the VSC group compared to the HC group. Spearman correlation analyses further revealed a positive correlation between impulsiveness and GMV of the left superior temporal gyrus, bilateral insula and left medial orbital part of the superior frontal gyrus in the VSC group. CONCLUSION: Our findings have provided further evidence for structural alterations in patients with SCZ who had engaged in severe violence, as well as the relationship between the specific brain alterations and impulsiveness. This work provides neural biomarkers and improves our insight into the neural underpinnings of violence in patients with SCZ.


Assuntos
Esquizofrenia , Humanos , Masculino , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Pré-Frontal , Córtex Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos
8.
PLoS One ; 19(4): e0300415, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626023

RESUMO

INTRODUCTION: Multiple Sclerosis (MS) is a chronic neurodegenerative disorder that affects the central nervous system (CNS) and results in progressive clinical disability and cognitive decline. Currently, there are no specific imaging parameters available for the prediction of longitudinal disability in MS patients. Magnetic resonance imaging (MRI) has linked imaging anomalies to clinical and cognitive deficits in MS. In this study, we aimed to evaluate the effectiveness of MRI in predicting disability, clinical progression, and cognitive decline in MS. METHODS: In this study, according to PRISMA guidelines, we comprehensively searched the Web of Science, PubMed, and Embase databases to identify pertinent articles that employed conventional MRI in the context of Relapsing-Remitting and progressive forms of MS. Following a rigorous screening process, studies that met the predefined inclusion criteria were selected for data extraction and evaluated for potential sources of bias. RESULTS: A total of 3028 records were retrieved from database searching. After a rigorous screening, 53 records met the criteria and were included in this study. Lesions and alterations in CNS structures like white matter, gray matter, corpus callosum, thalamus, and spinal cord, may be used to anticipate disability progression. Several prognostic factors associated with the progression of MS, including presence of cortical lesions, changes in gray matter volume, whole brain atrophy, the corpus callosum index, alterations in thalamic volume, and lesions or alterations in cross-sectional area of the spinal cord. For cognitive impairment in MS patients, reliable predictors include cortical gray matter volume, brain atrophy, lesion characteristics (T2-lesion load, temporal, frontal, and cerebellar lesions), white matter lesion volume, thalamic volume, and corpus callosum density. CONCLUSION: This study indicates that MRI can be used to predict the cognitive decline, disability progression, and disease progression in MS patients over time.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/diagnóstico por imagem , Atrofia/patologia , Esclerose Múltipla Recidivante-Remitente/patologia
9.
Brain Behav ; 14(4): e3473, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594225

RESUMO

BACKGROUND AND PURPOSE: Quantitative susceptibility mapping (QSM) technique was a new quantitative magnetic resonance imaging technique to evaluate the cerebral iron deposition in clinical practice. The current study was aimed to investigate the reproducibility of the volumetric susceptibility value of the subcortical gray nuclei at two different MR vendor with the same magnetic strength. METHODS: Cerebral magnitude and phase images of 21 normal subjects were acquired from a 3D multiecho enhanced gradient recalled echo sequence at two different 3.0T MR scanner, and then the magnetic susceptibility images were generated by STI software. The brain structural images were coregistered with magnitude images and generated the normalized parameters, and then generated the normalized susceptibility images. The subcortical gray nuclei template was applied to extract the volumetric susceptibility value of the target nuclei. RESULTS: ICC value (95% CI) of the caudate, putamen and GP were 0.847 (0.660-0.935), 0.848 (0.663-0.935) and 0.838 (0.643-0.931), respectively. The ICC value of the thalamus was 0.474 (0.064-0.747). Ninety-five point two percent (20/21) of the difference points of the susceptibility located between the 95% LA for the caudate at the two different 3.0T MR scanner, while the less than 95% of the difference points of the susceptibility value located between the 95% LA for the putamen, globus pallidus and thalamus. CONCLUSION: The current study identified that the caudate had the stable reproducibility of the magnetic susceptibility value, and the other basal ganglion nuclei should be cautious for the quantitative evaluation of the magnetic susceptibility value at different 3.0T MR scanner.


Assuntos
Encéfalo , Substância Cinzenta , Humanos , Substância Cinzenta/diagnóstico por imagem , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Putamen
10.
Crit Care ; 28(1): 118, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594772

RESUMO

BACKGROUND: This study aimed to develop an automated method to measure the gray-white matter ratio (GWR) from brain computed tomography (CT) scans of patients with out-of-hospital cardiac arrest (OHCA) and assess its significance in predicting early-stage neurological outcomes. METHODS: Patients with OHCA who underwent brain CT imaging within 12 h of return of spontaneous circulation were enrolled in this retrospective study. The primary outcome endpoint measure was a favorable neurological outcome, defined as cerebral performance category 1 or 2 at hospital discharge. We proposed an automated method comprising image registration, K-means segmentation, segmentation refinement, and GWR calculation to measure the GWR for each CT scan. The K-means segmentation and segmentation refinement was employed to refine the segmentations within regions of interest (ROIs), consequently enhancing GWR calculation accuracy through more precise segmentations. RESULTS: Overall, 443 patients were divided into derivation N=265, 60% and validation N=178, 40% sets, based on age and sex. The ROI Hounsfield unit values derived from the automated method showed a strong correlation with those obtained from the manual method. Regarding outcome prediction, the automated method significantly outperformed the manual method in GWR calculation (AUC 0.79 vs. 0.70) across the entire dataset. The automated method also demonstrated superior performance across sensitivity, specificity, and positive and negative predictive values using the cutoff value determined from the derivation set. Moreover, GWR was an independent predictor of outcomes in logistic regression analysis. Incorporating the GWR with other clinical and resuscitation variables significantly enhanced the performance of prediction models compared to those without the GWR. CONCLUSIONS: Automated measurement of the GWR from non-contrast brain CT images offers valuable insights for predicting neurological outcomes during the early post-cardiac arrest period.


Assuntos
Parada Cardíaca Extra-Hospitalar , Substância Branca , Humanos , Estudos Retrospectivos , Substância Cinzenta/diagnóstico por imagem , Parada Cardíaca Extra-Hospitalar/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Prognóstico
11.
PLoS One ; 19(4): e0301449, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626171

RESUMO

INTRODUCTION: Magnetic resonance imaging (MRI) enables the investigation of pathological changes in gray and white matter at the lumbosacral enlargement (LSE) and conus medullaris (CM). However, conducting group-level analyses of MRI metrics in the lumbosacral spinal cord is challenging due to variability in CM length, lack of established image-based landmarks, and unknown scan-rescan reliability. This study aimed to improve inter-subject alignment of the lumbosacral cord to facilitate group-level analyses of MRI metrics. Additionally, we evaluated the scan-rescan reliability of MRI-based cross-sectional area (CSA) measurements and diffusion tensor imaging (DTI) metrics. METHODS: Fifteen participants (10 healthy volunteers and 5 patients with spinal cord injury) underwent axial T2*-weighted and diffusion MRI at 3T. We assessed the reliability of spinal cord and gray matter-based landmarks for inter-subject alignment of the lumbosacral cord, the inter-subject variability of MRI metrics before and after adjusting for the CM length, the intra- and inter-rater reliability of CSA measurements, and the scan-rescan reliability of CSA measurements and DTI metrics. RESULTS: The slice with the largest gray matter CSA as an LSE landmark exhibited the highest reliability, both within and across raters. Adjusting for the CM length greatly reduced the inter-subject variability of MRI metrics. The intra-rater, inter-rater, and scan-rescan reliability of MRI metrics were the highest at and around the LSE (scan-rescan coefficient of variation <3% for CSA measurements and <7% for DTI metrics within the white matter) and decreased considerably caudal to it. CONCLUSIONS: To facilitate group-level analyses, we recommend using the slice with the largest gray matter CSA as a reliable LSE landmark, along with an adjustment for the CM length. We also stress the significance of the anatomical location within the lumbosacral cord in relation to the reliability of MRI metrics. The scan-rescan reliability values serve as valuable guides for power and sample size calculations in future longitudinal studies.


Assuntos
Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem
12.
Br J Psychiatry ; 224(5): 170-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602159

RESUMO

BACKGROUND: Major depressive disorder (MDD) has been increasingly understood as a disruption of brain connectome. Investigating grey matter structural networks with a large sample size can provide valuable insights into the structural basis of network-level neuropathological underpinnings of MDD. AIMS: Using a multisite MRI data-set including nearly 2000 individuals, this study aimed to identify robust topology and connectivity abnormalities of grey matter structural network linked to MDD and relevant clinical phenotypes. METHOD: A total of 955 MDD patients and 1009 healthy controls were included from 23 sites. Individualised structural covariance networks (SCN) were established based on grey matter volume maps. Following data harmonisation, network topological metrics and focal connectivity were examined for group-level comparisons, individual-level classification performance and association with clinical ratings. Various validation strategies were applied to confirm the reliability of findings. RESULTS: Compared with healthy controls, MDD individuals exhibited increased global efficiency, abnormal regional centralities (i.e. thalamus, precentral gyrus, middle cingulate cortex and default mode network) and altered circuit connectivity (i.e. ventral attention network and frontoparietal network). First-episode drug-naive and recurrent patients exhibited different patterns of deficits in network topology and connectivity. In addition, the individual-level classification of topological metrics outperforms that of structural connectivity. The thalamus-insula connectivity was positively associated with the severity of depressive symptoms. CONCLUSIONS: Based on this high-powered data-set, we identified reliable patterns of impaired topology and connectivity of individualised SCN in MDD and relevant subtypes, which adds to the current understanding of neuropathology of MDD and might guide future development of diagnostic and therapeutic markers.


Assuntos
Transtorno Depressivo Maior , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Transtorno Depressivo Maior/patologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Masculino , Adulto , Pessoa de Meia-Idade , Conectoma , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Estudos de Casos e Controles , Neuroimagem , Adulto Jovem , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Rede de Modo Padrão/fisiopatologia
13.
Sci Rep ; 14(1): 8940, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637536

RESUMO

An abnormality of structures and functions in the hippocampus may have a key role in the pathophysiology of major depressive disorder (MDD). However, it is unclear whether structure factors of the hippocampus effectively impact antidepressant responses by hippocampal functional activity in MDD patients. We collected longitudinal data from 36 MDD patients before and after a 3-month course of antidepressant pharmacotherapy. Additionally, we obtained baseline data from 43 healthy controls matched for sex and age. Using resting-state functional magnetic resonance imaging (rs-fMRI), we estimated the dynamic functional connectivity (dFC) of the hippocampal subregions using a sliding-window method. The gray matter volume was calculated using voxel-based morphometry (VBM). The results indicated that patients with MDD exhibited significantly lower dFC of the left rostral hippocampus (rHipp.L) with the right precentral gyrus, left superior temporal gyrus and left postcentral gyrus compared to healthy controls at baseline. In MDD patients, the dFC of the rHipp.L with right precentral gyrus at baseline was correlated with both the rHipp.L volume and HAMD remission rate, and also mediated the effects of the rHipp.L volume on antidepressant performance. Our findings suggested that the interaction between hippocampal structure and functional activity might affect antidepressant performance, which provided a novel insight into the hippocampus-related neurobiological mechanism of MDD.


Assuntos
Transtorno Depressivo Maior , Córtex Motor , Humanos , Substância Cinzenta/diagnóstico por imagem , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo
14.
PeerJ ; 12: e17228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618564

RESUMO

Background: Driving is a complex skill involving various cognitive activities. Previous research has explored differences in the brain structures related to the navigational abilities of drivers compared to non-drivers. However, it remains unclear whether changes occur in the structures associated with low-level sensory and higher-order cognitive abilities in drivers. Methods: Gray matter volume, assessed via voxel-based morphometry analysis of T1-weighted images, is considered a reliable indicator of structural changes in the brain. This study employs voxel-based morphological analysis to investigate structural differences between drivers (n = 22) and non-drivers (n = 20). Results: The results indicate that, in comparison to non-drivers, drivers exhibit significantly reduced gray matter volume in the middle occipital gyrus, middle temporal gyrus, supramarginal gyrus, and cerebellum, suggesting a relationship with driving-related experience. Furthermore, the volume of the middle occipital gyrus, and middle temporal gyrus, is found to be marginally negative related to the years of driving experience, suggesting a potential impact of driving experience on gray matter volume. However, no significant correlations were observed between driving experiences and frontal gray matter volume. Conclusion: These findings suggest that driving skills and experience have a pronounced impact on the cortical areas responsible for low-level sensory and motor processing. Meanwhile, the influence on cortical areas associated with higher-order cognitive function appears to be minimal.


Assuntos
Encéfalo , Substância Cinzenta , Substância Cinzenta/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Cerebelo , Cognição , Lobo Occipital/diagnóstico por imagem
15.
Curr Med Imaging ; 20: e15734056219963, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660947

RESUMO

BACKGROUND: A contrast agent-free approach would be preferable to the frequently used invasive approaches for evaluating cerebral perfusion in chronic migraineurs (CM). In this work, non-invasive quantitative volumetric perfusion imaging was used to evaluate alterations in cerebral perfusion in CM. METHODS: We used conventional brain structural imaging sequences and 3D pseudo-continuous arterial spin labeling (3D PCASL) to examine thirteen CM patients and fifteen normal controls (NCs). The entire brain gray matter underwent voxel-based analysis, and the cerebral blood flow (CBF) values of the altered positive areas were retrieved to look into the clinical variables' significant correlation. RESULTS: Brain regions with the decreased perfusion were located in the left postcentral gyrus, bilateral middle frontal gyrus, left middle occipital gyrus, left superior parietal lobule, left medial segment of superior frontal gyrus, and right orbital part of the inferior frontal gyrus. White matter fibers with decreased perfusion were located in bilateral superior longitudinal tracts, superior corona radiata, external capsules, anterior and posterior limbs of the internal capsule, anterior corona radiata, inferior longitudinal fasciculus, and right corticospinal tract. However, the correlation analysis showed no significant correlation between the CBF value of the above positive brain regions with clinical variables (p > 0.05). CONCLUSION: The current study provided more useful information to comprehend the pathophysiology of CM and revealed a new insight into the neural mechanism of CM from the pattern of cerebral hypoperfusion.


Assuntos
Circulação Cerebrovascular , Transtornos de Enxaqueca , Marcadores de Spin , Humanos , Circulação Cerebrovascular/fisiologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/fisiopatologia , Feminino , Adulto , Masculino , Imageamento Tridimensional/métodos , Doença Crônica , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/irrigação sanguínea
16.
Alzheimers Res Ther ; 16(1): 88, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654366

RESUMO

BACKGROUND: Alzheimer's disease is characterized by large-scale structural changes in a specific pattern. Recent studies developed morphological similarity networks constructed by brain regions similar in structural features to represent brain structural organization. However, few studies have used local morphological properties to explore inter-regional structural similarity in Alzheimer's disease. METHODS: Here, we sourced T1-weighted MRI images of 342 cognitively normal participants and 276 individuals with Alzheimer's disease from the Alzheimer's Disease Neuroimaging Initiative database. The relationships of grey matter intensity between adjacent voxels were defined and converted to the structural pattern indices. We conducted the information-based similarity method to evaluate the structural similarity of structural pattern organization between brain regions. Besides, we examined the structural randomness on brain regions. Finally, the relationship between the structural randomness and cognitive performance of individuals with Alzheimer's disease was assessed by stepwise regression. RESULTS: Compared to cognitively normal participants, individuals with Alzheimer's disease showed significant structural pattern changes in the bilateral posterior cingulate gyrus, hippocampus, and olfactory cortex. Additionally, individuals with Alzheimer's disease showed that the bilateral insula had decreased inter-regional structural similarity with frontal regions, while the bilateral hippocampus had increased inter-regional structural similarity with temporal and subcortical regions. For the structural randomness, we found significant decreases in the temporal and subcortical areas and significant increases in the occipital and frontal regions. The regression analysis showed that the structural randomness of five brain regions was correlated with the Mini-Mental State Examination scores of individuals with Alzheimer's disease. CONCLUSIONS: Our study suggested that individuals with Alzheimer's disease alter micro-structural patterns and morphological similarity with the insula and hippocampus. Structural randomness of individuals with Alzheimer's disease changed in temporal, frontal, and occipital brain regions. Morphological similarity and randomness provide valuable insight into brain structural organization in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Idoso , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Idoso de 80 Anos ou mais , Processamento de Imagem Assistida por Computador , Neuroimagem/métodos
17.
Sci Rep ; 14(1): 7023, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528027

RESUMO

The study aimed to investigate alterations in gray matter volume in individuals undergoing regular soccer training, using high-resolution structural data, while also examining the temporal precedence of such structural alterations. Both voxel-based morphometry and source-based morphometry (SBM) methods were employed to analyze volumetric changes in gray matter between the soccer and control groups. Additionally, a causal network of structural covariance (CaSCN) was built using granger causality analysis on brain structural data ordering by training duration. Significant increases in gray matter volume were observed in the cerebellum in the soccer group. Additionally, the results of the SBM analysis revealed significant increases in gray matter volume in the calcarine and thalamus of the soccer group. The analysis of CaSCN demonstrated that the thalamus had a prominent influence on other brain regions in the soccer group, while the calcarine served as a transitional node, and the cerebellum acted as a prominent node that could be easily influenced by other brain regions. In conclusion, our study identified widely affected regions with increased gray matter volume in individuals with regular soccer training. Furthermore, a temporal precedence relationship among these regions was observed.


Assuntos
Substância Cinzenta , Futebol , Humanos , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Córtex Cerebral
18.
Hum Brain Mapp ; 45(5): e26656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530116

RESUMO

Gray matter (GM) atrophy and white matter (WM) lesions may contribute to cognitive decline in patients with delayed neurological sequelae (DNS) after carbon monoxide (CO) poisoning. However, there is currently a lack of evidence supporting this relationship. This study aimed to investigate the volume of GM, cortical thickness, and burden of WM lesions in 33 DNS patients with dementia, 24 DNS patients with mild cognitive impairment, and 51 healthy controls. Various methods, including voxel-based, deformation-based, surface-based, and atlas-based analyses, were used to examine GM structures. Furthermore, we explored the connection between GM volume changes, WM lesions burden, and cognitive decline. Compared to the healthy controls, both patient groups exhibited widespread GM atrophy in the cerebral cortices (for volume and cortical thickness), subcortical nuclei (for volume), and cerebellum (for volume) (p < .05 corrected for false discovery rate [FDR]). The total volume of GM atrophy in 31 subregions, which included the default mode network (DMN), visual network (VN), and cerebellar network (CN) (p < .05, FDR-corrected), independently contributed to the severity of cognitive impairment (p < .05). Additionally, WM lesions impacted cognitive decline through both direct and indirect effects, with the latter mediated by volume reduction in 16 subregions of cognitive networks (p < .05). These preliminary findings suggested that both GM atrophy and WM lesions were involved in cognitive decline in DNS patients following CO poisoning. Moreover, the reduction in the volume of DMN, VN, and posterior CN nodes mediated the WM lesions-induced cognitive decline.


Assuntos
Intoxicação por Monóxido de Carbono , Disfunção Cognitiva , Substância Branca , Humanos , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Atrofia , Progressão da Doença
19.
Hum Brain Mapp ; 45(5): e26589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38530121

RESUMO

BACKGROUND: Prior research has shown smaller cortical and subcortical gray matter volumes among individuals with attention-deficit/hyperactivity disorder (ADHD). However, neuroimaging studies often do not differentiate between inattention and hyperactivity/impulsivity, which are distinct core features of ADHD. The present study uses an approach to disentangle overlapping variance to examine the neurostructural heterogeneity of inattention and hyperactivity/impulsivity dimensions. METHODS: We analyzed data from 10,692 9- to 10-year-old children from the Adolescent Brain Cognitive Development (ABCD) Study. Confirmatory factor analysis was used to derive factors representing inattentive and hyperactive/impulsive traits. We employed structural equation modeling to examine these factors' associations with gray matter volume while controlling for the shared variance between factors. RESULTS: Greater endorsement of inattentive traits was associated with smaller bilateral caudal anterior cingulate and left parahippocampal volumes. Greater endorsement of hyperactivity/impulsivity traits was associated with smaller bilateral caudate and left parahippocampal volumes. The results were similar when accounting for socioeconomic status, medication, and in-scanner motion. The magnitude of these findings increased when accounting for overall volume and intracranial volume, supporting a focal effect in our results. CONCLUSIONS: Inattentive and hyperactivity/impulsivity traits show common volume deficits in regions associated with visuospatial processing and memory while at the same time showing dissociable differences, with inattention showing differences in areas associated with attention and emotion regulation and hyperactivity/impulsivity associated with volume differences in motor activity regions. Uncovering such biological underpinnings within the broader disorder of ADHD allows us to refine our understanding of ADHD presentations.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Córtex Cerebral , Cognição , Comportamento Impulsivo
20.
Sci Rep ; 14(1): 7244, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538745

RESUMO

We aimed to evaluate whether white and gray matter microstructure changes observed with magnetic resonance imaging (MRI)-based diffusion tensor imaging (DTI) can be used to reflect the progression of chronic brain trauma. The MRI-DTI parameters, neuropathologic changes, and behavioral performance of adult male Wistar rats that underwent moderate (2.1 atm on day "0") or repeated mild (1.5 atm on days "0" and "2") traumatic brain injury (TBI or rmTBI) or sham operation were evaluated at 7 days, 14 days, and 1-9 months after surgery. Neurobehavioral tests showed that TBI causes long-term motor, cognitive and neurological deficits, whereas rmTBI results in more significant deficits in these paradigms. Both histology and MRI show that rmTBI causes more significant changes in brain lesion volumes than TBI. In vivo DTI further reveals that TBI and rmTBI cause persistent microstructural changes in white matter tracts (such as the body of the corpus callosum, splenium of corpus callus, internal capsule and/or angular bundle) of both two hemispheres. Luxol fast blue measurements reveal similar myelin loss (as well as reduction in white matter thickness) in ipsilateral and contralateral hemispheres as observed by DTI analysis in injured rats. These data indicate that the disintegration of microstructural changes in white and gray matter parameters analyzed by MRI-DTI can serve as noninvasive and reliable markers of structural and functional level alterations in chronic TBI.


Assuntos
Lesões Encefálicas Traumáticas , Substância Branca , Masculino , Ratos , Animais , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Ratos Wistar , Imageamento por Ressonância Magnética , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...